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Abstract 

In battles with aimed fire, the attrition of a force can under simplified assumptions be shown to be 
proportional to the number of enemies. Lanchester models for aimed fire are differential equation 
systems that can be applied to describe the dynamics of such battles In order to determine the attrition 
coefficients and the complete dynamics of the battle in continuous time, the following procedure is 
introduced: First, the general solution of the Lanchester differential equation system, which is a 
homogenous second order differential equation system, is derived. The four parameters of the solution 
are determined. In these equations, the initial and terminal sizes of the two forces, are parameters. A 
4-dimensional fix point iteration algorithm is developed and implemented as a computer code, that 
rapidly solves the nonlinear equation system. After 40 iterations, the absolute relative errors in all 
equations are smaller than 10-12 . Then, a discrete time version of the Lanchester differential equation 
system, with stochastic attrition coefficients, is defined as a difference equation system. The effects of 
increasing risk in the attrition coefficients, that determine how the time derivative of the size of force 
X is affected by the size of force Y, at different points in time, is analyzed. It is shown that the expected 
size of force X is a strictly convex function of the risk in the attrition coefficients. According to the 
Jensen’s inequality, the expected size of force X at time t+2 is a strictly increasing function of the risk in 
the attrition coefficients at time t and t+1 for arbitrary values of t. In case the attrition coefficients in 
different periods are stochastic, and the system parameters are determined according to the suggested 
procedure, then the expected attrition coefficients obtain higher values than if the attrition coefficients 
would be constant over time. This can explain differences between attrition coefficient estimates based 
on different methods and coefficient risk assumptions. 

Keywords: Lanchester equations, attrition parameters, differential equation system, 
numerical iteration. 

 

1. Introduction 

Competition can be observed in many different areas. In the domain of economics, we find competition 
between nations, in international trade theory, between companies, in market theory, and between 
individuals, in labor economics. Shatz (2020) gives a wide perspective on connected issues. Biological 
theory includes models of competition between different species, including many types of animals and 
plants. Compare the field covered by Iannelli and Pugliese (2014). Competition between nations and 
coalitions can also lead to wars and other conflicts. Relevant mathematical theories and examples are 
found in Washburn and Kress (2009). In all of these kinds of competition, we find several interesting 
and relevant scientific questions, such as: How do the different parties in the competition affect the 
other parties? How will the system develop over time? Can some actors influence these competitive 
situations and may optimal strategies be derived? 
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When scientific models are developed to describe, analyze, and manage the competition situations in 
economics, biology, and war science, it often turns out that the mathematical structure is very similar. 
In this study, we will focus on typical military problems. The general results and approaches can 
however be expected to be useful also in the fields of biology and economics. Wars are military 
conflicts, usually between nations. Sometimes, the participants belong to, or are cooperating with, 
other nations or coalitions. A recent study of how such wars can be modelled, and the strategies 
optimized, using optimal control theory, is Lohmander (2023). Key ingredients in that study are 
differential equations that show how the involved parties influence each other, via attrition warfare, 
and how the total war system can be controlled and optimized via external arms support. Wars can 
also be studied at lower levels of command and within more constrained geographical areas. 
Lohmander (2019a) and Lohmander (2019b) are two such examples.  

In military operations research, the famous article by Lanchester (1916) is often used as a mathematical 
foundation. There, the general idea that the sizes of two opposing forces, X and Y, change over time, 
according to principles expressed as two differential equations. One of these differential equation 
systems, which has often been found to fit empirical time series data, from real battles, very well, states 
that the time derivative of the size of force X, is negative and proportional to the size of force Y. 
Furthermore, the time derivative of the size of force Y, is negative and proportional to the size of force 
X. In battles with aimed fire, the attrition of a force can under simplified assumptions be shown to be 
proportional to the number of enemies. Lanchester models for aimed fire are differential equation 
systems that can be applied to describe the dynamics of such battles. Estimations of attrition 
coefficients, the force reductions per time unit, per unit of the enemy force, have been reported in the 
literature, based on time series data from historical battles. Engel (1954), Bracken (1995), Tam (1998), 
Hung et al (2005) and Stymfal (2022) include such applications and estimations of the Lanchester 
models based on real military time series from different battles. Braun (1993) describes some of the 
applied differential equations and approaches. 

Relevant empirical data would ideally contain complete time series of the numbers of units of both 
forces. Sometimes, the time series are incomplete, and only the time series of one force is known. In 
some cases, the time series of one force is completely known, but only the initial and the final sizes of 
the enemy force are known. In earlier research, estimations of attrition coefficients have sometimes 
been made in discrete time, based on the observed time series data of one force, X, and the assumed 
and calculated time path of the size of the other force, Y. Such estimations have been made in several 
steps. This study will first investigate the general attrition coefficient estimation problem in continuous 
time. The relevant general differential equation system is specified and analytically solved and the 
parameters are numerically determined via numerical fix point iteration. In this process, the initial and 
terminal sizes of the involved forces are parameters of the boundary conditions. 

Often, deterministic models are approximations of a reality that is not perfectly predictable. Of course, 
this is true also in the present area of analysis. Rothschild and Stiglitz ((1970), (1971)) define risk, and 
increasing risk, in mathematically convenient ways, which makes it possible to study how stochastic 
parameter variations affect variables, systems, and optimal decisions. Lohmander (1986) and (1988) 
combines and applies the risk definitions of Rothschild and Stiglitz ((1970), (1971)) with the famous 
Jensen’s inequality, biological production functions and price series of natural resources, via analytical 
stochastic dynamic programming, to show how increasing risk in market prices and growth processes 
dynamically affect optimal decision in biological production. In a similar way, stochastic parameters 
should be expected to influence the outcomes of dynamic competition, battles, and wars. For this 
reason, a discrete time difference equation system approximation, of the Lanchester differential 
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equation system, is developed. With the created difference equation system model, the dynamic 
effects of stochastic attrition parameters are analyzed. The obtained results are reported in this paper. 

The battle of Iwo Jima, an island in the Pacific Ocean, occurred between United States and Japan during 
the second World War, from February 19 until March 26, 1945. Engel (1954), Braun (1993), Washburn 
and Kress (2009), and Stymfal (2022), have all described and analyzed this battle. The original time 
series data and estimations from Engel (1954) have over time been marginally updated. In Figure 1, we 
see the latest version of the time series data of the force of USA, denoted X, on the island Iwo Jima, 
from the start of the battle, Day 0, until the end of the battle, Day 36. Figure 2 illustrates how the US 
force changed, per day, during the battle. Day 3 and Day 6, more troops from USA landed on the island. 
Note that the time series of the size of the Japanese force is not available. The initial and terminal sizes 
of the Japanese force have approximate values in all reported studies. A discussion of these 
approximations is found in Stymfal (2022). 

In this paper, the general methodology is of key interest. The analysis does not introduce special 
assumptions to handle reinforcements. For this reason, the time series is analyzed only during the time 
interval without reinforcements. Figure 3 shows the changes of the US force from Day 6 until the end 
of the battle. The force difference during Day t, in Figure 3, is defined as the size of the force during Day 
t minus the size of the force during Day t-1. In the first analyses in this paper, we make the following 
assumptions, based on the data found in Stymfal (2022): We study the battle in continuous time, during 
the time interval from 0 to T, where T is 30. The time units are days, representing 24 hours each. In the 
present analysis, this time interval represents Day 6 until Day 36, as reported in Figure 1. At time 0, the 
size of the force from USA is 66 150 troops and Japan, according to a graph in Stymfal (2022), has 18 000 
troops. At time T, USA has 52 135 troops and the size of the force from Japan, in Case 0 in this study, is 
200 troops. (The terminal size of the Japanese force is not exactly known, and assumed to be different 
in the three different cases under analysis.) 

 

 
Figure 1. The dynamically changing size of force X, the force from USA, in the battle of Iwo 
Jima. Source: Data reported in Stymfal (2022), based on Engel (1954). 
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Figure 2. The change per day, the difference, of the size of force X, the force from USA, in the 
battle of Iwo Jima. Source: Derivations based on the data reported in Stymfal (2022), based 
on Engel (1954). 

 

In Figure 2., the graph shows the differences from Day 0 until the end of the battle. The force 
difference during Day t, is defined as the size of the force during Day t minus the size of the 
force during Day t-1. (In the graph, the size of the force in Day -1 was assumed to be identical 
to the size of the force in Day 0.) Reinforcements took place Day 3 and Day 6.  

 

 

 
Figure 3. The change per day, the difference, of the size of force X, the force from USA, in the 
battle of Iwo Jima. Source: Derivations are based on the data reported in Stymfal (2022), 
based on Engel (1954). 
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In Figure 3., the graph shows the differences from Day 7 until the end of the battle. The force 
difference during Day t, is defined as the size of the force during Day t minus the size of the 
force during Day t-1. Hence, the graph is based on data covering the size of the force from 
Day 6 until Day 36.  

 

2. Materials and Methods 

Briefing on this section: 

In order to determine the attrition coefficients and the complete dynamics of the battle in continuous 
time, the following procedure is used: First, the general solution to the Lanchester differential equation 
system, which is a homogenous second order differential equation system, is derived. This is a 2-
dimensional Two Point Boundary Value Problem. Four parameters are determined, via a nonlinear 
simultaneous equation system with four equations. In these equations, the initial and terminal sizes of 
the two forces, are parameters. A 4-dimensional fix point iteration algorithm is developed and 
implemented as a computer code, that rapidly solves the nonlinear equation system. After 40 iterations, 
the absolute relative errors in all equations are less than 10-12 . 

2.1. The differential equation system 

We study the differential equation system (1). There we see how the state of the system, ( , )x y , 
representing the sizes of the two opposing forces, changes over time, , 0t t T   . The two 
parameters, ( , )a b , are denoted attrition coefficients. Newtonian notation, with time derivatives 
marked by dots, is used. 

(1. )
0, 0

(1. )

x ay a
a b

y bx b

 = −  
 = −

 
 

(1) 

 

From (1.a), we get (2). 

1y a x−= −  
(2) 

 

Differentiation of (2) with respect to time, gives (3). 

1y a x−= −  
(3) 

 

(3) and (1.b) give (4), which can be rewritten as (5) and (6), which is a homogenous second order 
differential equation. 

1a x bx−− = −  
(4) 

 

1 0a x bx− − =  
(5) 
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0x abx− =  
(6) 

 

Let us assume that the functional form (7) is relevant. The parameters ( , )m   are assumed to be 
strictly different from zero. 

( ) , 0, 0,0tx t me m t T =       (7) 

 

Then, the following procedure can be used to determine the state variable as an explicit function of 
time. Equations (6) and (7) give (8). 

2 0t tme abme  − =  (8) 
 

Equation (8) can be simplified to (9). 

( )2 0tab me − =  (9) 

  
Equations (7) and (9) imply (10). 

2 0ab − =  (10) 
  

From the quadratic equation (10), we obtain the solution (11).  

ab =   (11) 

 
 

 

Let r be defined according to (12).  
 

r ab=  (12) 

Clearly, two solutions exist. 

1 r = −  (13) 

 

2 r =  (14) 

 

Observation:  

0 0a b   , as we see in equation (1), which means that there are two real roots. These roots 
have different values. Hence, the general solution of the differential equation is: 

1 2( ) rt rtx t m e m e−= +  (15) 

Furthermore, from (2) we already know that: 1y a x−= −  

As a result, we get (16). 

( )1
1 2( ) rt rty t a rm e rm e− −= − − +  (16) 
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The expression (16) may be rewritten as (17). 

1 2( ) rt rtr ry t m e m e
a a

−= −  
 

(17) 
 

Hence, the solution to the differential equation system (1) is given in (18). 

1 2

1 2

( )

( )

rt rt

rt rt

x t m e m e
r ry t m e m e
a a

−

−

 = +



= −

 
 

(18) 

 

2.2. Determination of the parameters 

To determine the time path ( )( ), ( )x t y t  we need to know the four parameters ( )1 2, , ,m m a r . 

We may use four boundary conditions to determine these parameters. We already know the initial 
and terminal conditions of the system, namely ( )0 0,x y and ( ),T Tx y . 

From equation (18), the initial conditions (19) and (20) follow:  

1 2 0(0)x m m x= + =  (19) 

 

1 2 0(0) r ry m m y
a a

= − =  
 

(20) 
 

The terminal conditions, (21) and (22), are also derived from equation (18): 

1 2( ) rT rT
Tx T m e m e x−= + =  (21) 

 

1 2( ) rT rT
T

r ry T m e m e y
a a

−= − =  
 

(22) 
 

We may now determine the values of the parameters ( )1 2, , ,m m a r . The nonlinear simultaneous 

equation system (23) should be solved. We assume that a feasible solution exists and that this 
solution is unique. 

1 2 0

1 2

1 2 0

1 2

(23. )
(23. )

(23. )

(23. )

rT rT
T

rT rT
T

m m x a
m e m e x b

r rm m y c
a a

r rm e m e y d
a a

−

−

+ =
 + =

 − =



− =


 

 
 
 

(23) 
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The solution of the simultaneous equation system can be found via an iteration algorithm, which is 
developed here:  

The initial guesses of the values of the parameters are given in (24). 

( ) ( )0 0 0 0
1 2 1 2, , , , , ,m m a r m m a r=  (24) 

 

The values of ( )1 2, , ,m m a r are sequentially updated. The iteration number is  , 0,1,...,i i I . The 

value of a parameter,   , after i  iteration steps, is denoted i . 

( ) ( )1
1 0 2.23. i iEq a m x m+ = −  (25) 

 

( ) ( )1 1 2
2 1.23.

i ii r T i r T
TEq b m x e m e+ − + − = −  (26) 

 

( )
1 1

1 1 2

0

( ).23.
i i i

i r m mEq c a
y

+ +
+ −

 = 
 

 
 

(27) 

 

( ) 11 1
2 11 1.23.

i i
i i

i r T i r T
Ti i

r rEq d m e m e y
a a

++ + −
+ +

 
 = − 

 
 

 
(28) 

 

From (28), we get (29), (30) and (31). 

1

1
11

1
21

i

i

i
i r T

Ti
r T

i
i

i

r m e y
a

e
r m

a

+

+ −
+

+
+

 
− 

 =  

 
 

(29) 

 

1
11

1

1
21

i
i

i r T
Ti

i
i

i
i

r m e y
a

r T LN
r m

a

+ −
+

+

+
+

  
−  

  =
 
  
 

 

 
 
 

(30) 

 

1
11

1
21

1

i
i

i r T
Ti

i
i

i
i

r m e y
a

LN
r m

a
r

T

+ −
+

+
+

+

  
−  

  
 
  
 =  

 
 
 
 
 

(31) 
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However, even if (31) is mathematically correct, it turns out that the solution to the equation system 
(23) sometimes diverges if equation (31) is used directly. This means that if the initial parameter 
guesses (24) are not quite correct, the iteration method will not make the solution approach the correct 
solution. Fortunately, as will be shown, it is very easy to obtain convergence in the algorithm. In the 
modified algorithm, the value of the parameter r changes less rapidly than if equation (31) would be 
used directly. The absolute change of r in the adjusted algorithm, is smaller than according to (31), but 
the change of r  is proportional to the change that would take place if (31) would be directly applied. 
In equation (32), the adjustment speed parameter h  is introduced. 

 

1
11

1
21

1

i
i

r T i
Ti

i
i

i
i i i

re m y
a

LN
r m

a
r r h r

T

− +
+

+
+

+

   
−   

   
   
       = + − 
 
 
 
 
 
 

 

 
 
 
 
 

(32) 

 

If 1h = , then equation (32) corresponds exactly to (31), and the solution has been observed to 
diverge from the equilibrium. In the tested applications, the algorithm converges rapidly if we select 
the adjustment speed parameter value * 0.3h = . 

 

2.3 Summary of the algorithm 

The initial values of the parameters are introduced in equation (33). 

( ) ( )0 0 0 0
1 2 1 2, , , , , ,m m a r m m a r=  (33) 

 

The values of ( )1 2, , ,m m a r are sequentially updated. The iteration number is  , 0,1,...,i i I . 

1
1 0 2
i im x m+ = −  (34) 

 

1 1 2
2 1

i ii r T i r T
Tm x e m e+ − + −= −  (35) 

 

1 1
1 1 2

0

( )i i i
i r m ma

y

+ +
+ −
=  

 
(36) 
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1
11

1
21

1 , 0.3

i
i

r T i
Ti

i
i

i
i i i

re m y
a

LN
r m

a
r r h r h

T

− +
+

+
+

+

   
−   

   
   
       = + − = 
 
 
 
 
 
 

 

 
 
 
 
 

(37) 

 

In case the solution does not converge in some other application, it is suggested that the adjustment 
speed parameter h  is reduced to some value such that 0 0.3h  . The iteration algorithm in 
equations (33) to (37), is implemented in the computer code in the numerical appendix, and used to 
solve the coefficient estimation problems with empirical data. 

 

2.4 Parameter estimation based on discrete time and stochastic outcomes 

Briefing on this section: 

Now, a discrete time version of the Lanchester simultaneous differential equation system, with 
stochastic attrition coefficients, is defined as a difference equation system. Stochastic variables are 
added to the expected attrition coefficients in different time periods, keeping the expected value of the 
attrition coefficients constant. The effect of increasing risk in the attrition coefficients that determine 
how the time derivative of force X is affected by force Y at different points in time, is analyzed. It is 
shown that the expected size of the force X at time t+2, is a strictly convex function of the risk in the 
attrition coefficients at times t and t+1. Hence, according to the Jensen’s inequality, the expected size of 
the force X at time t+2, is a strictly increasing function of the risk in the attrition coefficients. 
Comparative statics analysis shows that, in case the attrition coefficients in different periods are 
stochastic, but the system parameters are determined under deterministic assumptions, then the 
estimated attrition coefficients obtain higher values than if the attrition coefficients would really be 
constant over time. This can partly explain differences between attrition coefficient estimates based on 
different methods and risk assumptions. 

 

2.5 Development of the stochastic difference model 

The initial conditions ( )0 0,x y  are known. s  is a stochastic variable with expected value ( ) 0E s = , the 

variance 2
s  and the standard deviation s . If the stochastic variable s  increases in one period, it 

decreases in another period, so that the expected value of the attrition coefficients in different periods, 
is held constant. The attrition coefficients in different periods are given period indices and are assumed 
to be strictly positive. The state ( ),t tx y  variables are also assumed to be strictly positive, as seen in 
equation (38). We focus on risk in the periods 0 and 1, and make sure that the expected value of the 
attrition coefficients in these periods is held constant. Compare equation (39). 

 0 0 0 0, 0,1,...,t t t ta b x y t T         (38) 
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0 1

2
a aa +

=  
 

(39) 
 

We can express the time dependent attrition coefficients as (40) and (41). 

0a a s= +  (40) 

 

1a a s= −  (41) 

 

The coordinates at time t are ( ),t tx y . These are recursively determined in (42) to (45). 

1 1 0 0 0x x x a y = − = −  (42) 

 

1 1 0 1 1y y y b x = − = −  (43) 

 

2 2 1 1 1x x x a y = − = −  (44) 

 

2 2 1 2 2y y y b x = − = −  (45) 

 

The recursion (42) to (45) can be described as (46) to (49). 

1 0 0 0x x a y= −  (46) 

 

1 0 1 1y y b x= −  (47) 

 

2 1 1 1x x a y= −  (48) 

 

2 1 2 2y y b x= −  (49) 

 

Now, we can determine how 2x  is affected by changing properties of the stochastic variable s . 

From (46) and (48), we get (50). Via the earlier equations, (50) is further developed to (51). 

( )2 0 0 0 1 1x x a y a y= − −  (50) 

 

( )( ) ( ) ( )( )2 0 0 0 1 0 0 0x x a s y a s y b x a y= − + − − − −  (51) 
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( ) ( ) ( ) ( )( )2 0 0 0 1 0 0x x a s y a s y a s b x a s y= − + − − + − − +  (52) 

 

( ) ( ) ( )2 0 0 1 0 1 02x x ay a s b x a s a s b y= − + − − − +  (53) 

 

( )( ) ( )( )2 2
2 1 0 1 01 2x a s b x a a s b y= + − − + −  (54) 

 

2
1 0 1 02dx b x b y s

ds
= − +  

 
(55) 

 

2
2

1 02 2 0d x b y
ds

=   
 

(56) 

 

 

Observation: 

2x  may be regarded as a function of many parameters, including s . Compare equation (54). In 

equations (57) and (58), we simplify notation and write 2 ( )x s . According to equation (56), 2x  is a 
strictly convex function of s . From the Jensen’s inequality (Jensen (1906)), we get the equations (57) 
and (58). 

( )( ) ( )( ) 2
2 2 , 0sE x s x E s if    (57) 

 

( )( ) ( )( ) 2
2 2 , 0sE x s x E s if = =  (58) 

 

2.6 Terminal condition as expected value 

In a 2- period problem, we have the terminal condition found in equation (59). The expected value of 

2x  is written as a function of ( , )a s , where s is a function of the standard deviation of s , s . 

( )( )( )2 , s TE x a s x =  (59) 

We are interested to see how the estimated a  should be adjusted in case we know that s  increases, 
and we simultaneously want to make sure that the terminal condition (59) is satisfied. 

Total differentiation gives equation (60). Clearly, as we see in equation (61), we cannot change the 
already known terminal value of the state variable. 

( ) ( )2 2 0s T
s

dE x dE x
da d dx

da d



+ − =  

 
(60) 

 

0Tdx =  (61) 
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Equations (60) and (61) lead to (62), which can be rewritten as (63). 

( ) ( )2 2 0s
s

dE x dE x
da d

da d



+ =  

 
(62) 

 

( ) ( )2 2
s

s

dE x dE x
da d

da d



= −  

 
(63) 

 

The derivative of the parameter a , the estimated expected attrition coefficient, with respect to the 
standard deviation of the attrition coefficient, s , is found in equation (64). 

( )

( )

2

2

s

s

dE x
dda

d dE x
da




 
− 
 =
 
 
 

 

 
 

(64) 

 

In order to determine the sign of the derivative in equation (64), must know the sign of the derivative 
of 2x with respect to a , which is found in (65). Equation (65) can be reformulated to (66) and (67). 

2
0 1 0 1 02 2dx y b x b y a

da
= − + −  

 
(65) 

 

( )2
0 1 1 02 1dx y b a b x

da
= − + +  

 
(66) 

 

( )1 02
1 0

1 0

1
2 1

b a ydx b x
da b x

+ 
= − + 

 
 

 
(67) 

 

Equation (68) shows a combination of three different assumptions, which makes sure that the sign of 
the derivative of 2x with respect to a  is strictly negative. The first listed assumption follows from the 

earlier assumptions in this paper. The second assumption is satisfied in case 1 0.1b  , which is normal 
in most battles. (Compare the attrition coefficient values is Table 5.) The third assumption is a constraint 
on the ratio between the sizes of the initial forces: The initial size of force Y is at least 5% of the initial 
size of force X. That assumption is probably relevant in almost all real battles. Compare the initial force 
sizes reported in Table 1. In case the assumptions in (68) are true, then equation (69) follows. 

( ) ( )1 0 2
1 0

1 0

1 10 10 0
20

b a y dxb x
b x da
+   

         
  

 
 

(68) 
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( ) ( )
( )

( )

2

2 2

2

0 0 0s

s s

dE x
ddE x dE x da

d da d dE x
da


 

 
−        =     
 
 

 

 
 

(69) 

Some interpretations of equation (69) and the earlier assumptions are the following: We are interested 
to see how the estimated expected attrition coefficient a  should be adjusted in case s  changes. 
Simultaneously, we want to make sure that the terminal condition (59) is satisfied. The estimated 
expected attrition coefficient a  is a strictly increasing function of s . In other words; If the attrition 
coefficients contain more stochastic variation, and the terminal size of force X is constant, then the 
estimated value of the expected attrition coefficient increases. 

 

2.7 Generalization 

In case the reader prefers a more general version of the theory developed in (68) and (69), we may 
study equation (70). Equations (64) and (67) imply equation (70). The first assumption written in 
equation (70) follows from the earlier assumptions in this paper. The second assumption is that the 

ratio 0

0

y
x

exceeds a particular value, determined by the parameters ( )1,a b . In case  1 0.1b = , 0

0

y
x

should exceed 0.05, to satisfy the constraint, for all 0a  . In case  1 0.2b = , 0

0

y
x

should exceed 0.10, 

to satisfy the constraint, for all 0a  . If the constraint on the initial force ratios is satisfied, then 
equation (69) is satisfied, which is also clear from equation (70). In other words; If the attrition 
coefficients contain more stochastic variation, and the terminal size of force X is constant, then the 
estimated value of the expected attrition coefficient increases. 

( ) ( )

( )

( )

2

0 1 2
1 0

0 1 2

0 0 0
2 1

s

s

dE x
dy b dx dab x

x b a da d dE x
da




  
−              =       +          

 

 
 
 

(70) 

 

3. Results 

The general theory and the numerical iteration method developed in this paper are used to determine 
the attrition coefficients, and the dynamic developments of the forces from USA (= X), and Japan ( =Y), 
during the battle of Iwo Jima, from Day 6 (t = 0), when all US troops had arrived to the island, until Day 
36 (t = T = 30), the end of the battle. 

Table 1 shows the initial and terminal sizes of the force from USA, X, based on the data from the 
empirical appendix, and the initial and terminal sizes of the Japanese force, Y, according to estimates 
from Stymfal (2022), also denoted “Case 0” of this study. The terminal size of the Japanese force is not 
known with certainty. Therefore, in this study, all results are also determined for YT = 100 (Case 1) and 
for YT = 300 (Case 2). Tables 1, 2, 3 and 4 are produced by the computer code, which is found in the 
numerical appendix. Note that the initial values of the estimated parameters differ considerably from 
the estimated parameters, found in table 3. Several combinations of initial parameter values are tested. 
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It is found that the iteration algorithm converges and is reliable. The results, the estimates of the 
parameters reported in Table 3, are not affected by the alternative initial parameter values. 

 

Table 1. Parameters used in Case 0. 






















 

Table 2 shows how the numerical solution of the coefficient estimation algorithm converges. The 
convergence table is automatically generated by the computer code. The table shows how the relative 
errors in the four equations develop, during the numerical iteration. The first row corresponds to 
iteration 1, and the final row corresponds to iteration 40. After 40 iterations, the absolute relative errors 
are less than 10-12 in all the four equations. 
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Table 2. Iterative error reductions. 
























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The estimated parameter values of Case 0 are found in Table 3. The computer code also automatically 
derives and prints the estimated force equations, as seen in Table 4. 

Table 3. Estimated parameter values of Case 0. 











Table 4. Estimated force equations of Case 0. 






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

The estimated force size function based on the Case 0 assumptions, is denoted F0_USA. The time series 
of the force from USA, found in the empirical appendix, fits the estimated function, F0_USA, very well. 
This is seen in Figure 4.  

 

Figure 4. Size of the force from USA, according to the true (empirical) time series and according 
to the model version F0_USA. 

The dynamic changes of the force from USA and Japan, according to the estimated functions, based on 
Case 0, denoted F0_USA and F0_Japan, are shown in Figure 5. 

 

 

Figure 5. Sizes of the forces from USA and Japan, according to the models F0_USA and 
F0_Japan. 

0

10000

20000

30000

40000

50000

60000

70000

0 5 10 15 20 25 30 35 40

Si
ze

 o
f t

he
 fo

rc
e 

fro
m

 U
SA

(N
um

be
r o

 ft
ro

op
s)

Day of the battle

F0_USA True_USA

0
10000
20000
30000
40000
50000
60000
70000

0 5 10 15 20 25 30 35 40

Si
ze

 o
f t

he
 fo

rc
e

(N
um

be
r o

f t
ro

op
s)

Day of the battle

F0_USA F0_Japan



68	 Journal of Statistics and Computer ScienceDiff_PL_man 240704_2031 

Page 18 of 28 
 

Figure 6 shows that the different tested assumptions concerning the terminal size of the force 
from Japan, YT, do not dramatically influence the dynamic force changes. The differences 
between different assumptions are almost not visible in the reported scale. In Case 0, YT =200, 
in Case 1, YT = 100, and in Case 2, YT =300. In Case 0, we have F0_USA and F0_Japan. In Case 
1, we get F1_USA and F1_Japan. Case 2 gives F2_USA and F2_Japan. The Figures 7, 8 and 9 
show the differences in higher resolution. 

 

 

Figure 6. Sizes of the forces from USA and from Japan, according to different assumptions 
concerning the size of the Japanese force at the end of the battle, YT.   

 

A close inspection of the size of the Japanese force in Figure 7, shows that the different assumptions 
and cases give different results. Figure 8 gives a detailed description of how the derived size of the force 
from USA dynamically is influenced by the alternative assumptions concerning the terminal size of the 
Japanese force, YT. 
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Figure 7. Differences of the size of the force from Japan from Case 0, according to different 
assumptions concerning the size of the Japanese force at the end of the battle, YT.   

 

 

Figure 8. Differences of the size of the force from USA from Case 0, according to different 
assumptions concerning the size of the Japanese force at the end of the battle, YT.   
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The deviations between the true and estimated force sizes from USA, for the alternative cases, are 
reported in Figure 9. Note that these deviations are zero at t=0 and at t = T. The deviations can partly 
be explained by the variations of the force change that are described in Figure 3. 

 

 

Figure 9. Deviations of the size of the force from USA from the calculated values, according to 
different assumptions concerning the size of the Japanese force at the end of the battle, YT. 

 

In Table 5, we find that the different estimates of the attrition coefficients, a and b, are very similar in 
the different studies.  

Table 5. Estimations of the attrition coefficient values. 

 Estimated  
value of a 

Estimated  
value of b 

R2 

Lohmander Case 0 0.05347 0.01045 0.99997 
Lohmander Case 1 0.05379 0.01051 0.99997 
Lohmander Case 2 0.05315 0.01039 0.99997 
Engel (1954) 0.0544 0.0106 0.9937 
Braun (1993) via Engel (1954) 0.0544 0.0106 No information 
Washburn and Kress (2009) 
via Engel (1954) 

0.0544 0.0106 No information 

Stymfal (2022) 0.0532 0.0105 0.9944 
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The new results may be summarized this way: To determine the attrition coefficients and the complete 
dynamics of the battle in continuous time, the following procedure is used: First, the general solution 
to the Lanchester differential equation system, which is a homogenous second order differential 
equation system, is derived. This represents a 2-dimensional Two Point Boundary Value Problem. Four 
parameters are determined, via a nonlinear simultaneous equation system with four equations. In 
these equations, the initial and terminal sizes of the two forces, are parameters. A 4-dimensional fix 
point iteration algorithm is developed and implemented as an included computer code, that rapidly 
solves the nonlinear equation system. After 40 iterations, the absolute relative errors in all equations 
are less than 10-12 . Then, a discrete time version of the Lanchester differential equation system, with 
stochastic attrition coefficients, is defined as a difference equation system. Stochastic variables are 
added to the attrition coefficients in different time periods, keeping the expected attrition coefficient 
constant. The effect of increasing risk in the attrition coefficients that determines how the time 
derivative of force X is affected by force Y at different points in time is analyzed. It is shown that the 
expected size of the force X is a strictly convex function of the risk in that attrition coefficient. Hence, 
according to the Jensen’s inequality, the expected size of the force X is a strictly increasing function of 
the risk in that attrition coefficient. Comparative statics analysis shows that, in case the attrition 
coefficients in different periods are stochastic, and the system parameters are determined according 
to the suggested procedure, then the expected attrition coefficients obtain higher values than if the 
attrition coefficients would be constant over time. This can explain differences between attrition 
coefficient estimates based on different methods and coefficient risk assumptions. 

 

4. Discussion 
 

Wars and battles are phenomena with negative consequences of many kinds. The numbers of 
dead and injured soldiers are often large and the values of damaged infrastructure and lost 
property are often enormous. Destroyed environments and large numbers of dead and injured 
civilians, are typical and terrible consequences of wars. For these reasons, it is very important 
that we do our best to avoid battles and wars. In case they can not be completely avoided, we 
should at least manage and control them in the best possible ways, reducing unnecessary 
consequences. In order to optimize the response to an aggressor, it is important to know how 
different decisions are expected to influence the outcome of a war. In this situation, it is 
necessary to have good and reliable estimates of attrition coefficients in different kinds of 
situations. 

In the case of Iwo Jima, the Japanese force had prepared the defense of the island, as described 
by the earlier studies. It is not surprising that the number of killed soldiers from USA, per 
soldier from Japan, per day, namely attrition coefficient a, is higher than the number of killed 
soldiers from Japan, per soldier from USA, per day, denoted attrition coefficient b. As we see 
in Table 5, this is also the case. The attrition coefficient a is approximately five times larger than 
the attrition coefficient b. However, even if the Japanese troops could kill many more soldiers 
from USA, per soldier and day, USA could still win the battle, since they had many more soldiers 
available when the battle started. This follows from the famous Lanchester square law, 
Lanchester (1916). This law is also very well described and demonstrated in Braun (1993). 
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Note that, the number of troops that USA sent to Iwo Jima, was sufficiently large to win the 
battle. However, it has not been proved that this was the optimal number of troops. With more 
US troops sent to the island, the number of killed and wounded US troops would probably be 
lower and the battle could have ended more rapidly. The optimal distribution of troops to 
different battle fields is an important optimization problem. 

Some research questions, strongly motivating to consider for future projects, in order to 
reduce the negative consequences from possible attacks, are the following: 

- How are the attrition coefficients influenced by the type of battle, different kinds of 
troops, arms, and weather conditions? 

- How should different possible battles be integrated in a relevant analysis of a complete 
war? 

- How should a defender most rationally organize the total defense, against possible 
aggressors, via optimal distribution of troops and arms to different possible battle 
fields? 

Reliable defense solutions, derived via rational defense analyses, may led to a more peaceful 
world. Efficient and reliable estimations of attrition coefficients, as suggested in this paper, are 
the necessary first steps. 

 

5. Conclusions 

This study has shown the following: 

It is possible to determine the attrition coefficients of a battle, if the initial and terminal sizes 
of the forces of the involved parties are known, and the general solution to the relevant 
differential equation system can be derived. This means that detailed statistical data tables, 
representing the time series of the sizes of the involved forces, are not necessary. This is an 
important conclusion since it is often very difficult, costly, dangerous and/or impossible to get 
access to detailed and reliable military statistical data, particularly during wars that have not 
yet ended. In the earlier mentioned articles on the battle of Iwo Jima, the authors of those 
articles used different statistical procedures and approximations to estimate the attrition 
coefficients. Now, with the new estimation procedure, based on a general differential equation 
system solution and a numerical iteration algorithm, it is possible to rapidly obtain almost 
identical estimates of the attrition parameters, a comparison of which may be made from Table 
5. 

Furthermore, with the new procedure, it is also possible to instantly, in less than a second, 
determine how possible changes of different parameters, such as the not exactly known 
terminal size of the Japanese force, influence the estimated attrition parameters. This is 
reported in Table 5. The new procedure automatically reports not only the estimated attrition 
coefficients, but also the equations that describe the dynamics of the involved forces, as 
explicit functions of time. 
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If the attrition coefficients change over time, and the expected attrition coefficients are 
estimated via regression analysis based on the complete detailed time series of the involved 
forces, then the expected attrition coefficients are larger, than if the attrition coefficient 
estimates are calculated with the method developed in this paper, or according to the earlier 
methods mentioned in this paper. The reason is that the expected size of a force at a later 
point in time is a strictly increasing function of the risk in the attrition parameters during earlier 
points in time. Hence, it is necessary that the expected attrition coefficient increases, if the 
size of the force should decrease to the same terminal size, as if the attrition coefficients would 
be constant over time. 
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APPENDIX 

 

A.1 Numerical Appendix 

The following software, Iter_diff_230827_1300.bas, was developed for QB64.exe. It contains the 
iteration algorithm applied in this paper. Note that the parameters may be changed in different cases. 

Rem 
Rem Iter_diff 
Rem Peter Lohmander 230827 
Screen _NewImage(1800, 2000, 256) 
Open "C:\Users\Peter\OneDrive\Desktop\Iter\IterOut.txt" For Output As #2 
DefDbl A-Z 
 

m1_0 = 1 
m2_0 = 1 
a_0 = 0.02 



Attrition coefficient estimations via differential equation system 	 75Diff_PL_man 240704_2031 

Page 25 of 28 
 

r_0 = 0.02 
b_0 = r_0 * r_0 / a_0 
m1 = m1_0 
m2 = m2_0 
a = a_0 
r = r_0 
b = b_0 
T = 30 
x0 = 66150 
xT = 52135 
y0 = 18000 
yT = 200 
h = 0.3 
Cls 
Print "" 
Print "  Relative errors:" 
Print "" 
Print "                 x0Err           y0Err           xTErr           yTErr" 
Print #2, "" 
Print #2, "  Relative errors:" 
Print #2, "" 
Print #2, "                 x0Err           y0Err           xTErr           yTErr" 
 
For i = 1 To 40 
    m1 = x0 - m2 
    m2 = xT * Exp(-r * T) - m1 * Exp(-2 * r * T) 
    a = r * (m1 - m2) / y0 
    k = (Exp(-r * T) * (r / a) * m1 - yT) / ((r / a) * m2) 
    If k > 1 Then r = r + h * (Log(k) / T - r) 
    b = r * r / a 
 
    x0Est = m1 + m2 
    y0Est = r / a * m1 - r / a * m2 
    xTEst = Exp(-r * T) * m1 + Exp(r * T) * m2 
    yTEst = Exp(-r * T) * r / a * m1 - Exp(r * T) * r / a * m2 
    x0Err = (x0Est - x0) / x0 
    y0Err = (y0Est - y0) / y0 
    xTErr = (xTEst - xT) / xT 
    yTErr = (yTEst - yT) / yT 
 
    Print "      "; 
    Print Using "###.############"; x0Err; y0Err; xTErr; yTErr 
    Print #2, "      "; 
    Print #2, Using "###.############"; x0Err; y0Err; xTErr; yTErr 
Next i 
 
Print "" 
Print "  Initial and terminal conditions:" 
Print "" 
Print "      x0 = "; x0 
Print "      y0 = "; y0 
Print "      xT = "; xT 
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Print "      yT = "; yT 
Print "" 
Print "  Other parameters:" 
Print "" 
Print "      T = "; T 
Print "      h = "; h 
Print "" 
Print "  Initial values of estimated parameters:" 
Print "" 
Print "      a_0  = "; a_0 
Print "      b_0  = "; b_0 
Print "      r_0  = "; r_0 
Print "      m1_0 = "; m1_0 
Print "      m2_0 = "; m2_0 
Print "" 
Print "  Estimated parameter values: " 
Print "" 
Print "      a  = "; a 
Print "      b  = "; b 
Print "      r  = "; r 
Print "      m1 = "; m1 
Print "      m2 = "; m2 
 
Print "" 
Print "  Estimated equations:" 
Print "" 
Print "      x(t) = "; 
Print Using "######.###"; m1; 
Print " * EXP("; 
Print Using "##.########"; -r; 
Print " * t )  + "; 
Print Using "######.###"; m2; 
Print " * EXP("; 
Print Using "##.########"; r; 
Print " * t )" 
Print "" 
Print "      y(t) = "; 
Print Using "######.###"; r / a * m1; 
Print " * EXP("; 
Print Using "##.########"; -r; 
Print " * t )  - "; 
Print Using "######.###"; r / a * m2; 
Print " * EXP("; 
Print Using "##.########"; r; 
Print " * t )" 
Print #2, "" 
Print #2, "  Initial and terminal conditions:" 
Print #2, "" 
Print #2, "      x0 = "; x0 
Print #2, "      y0 = "; y0 
Print #2, "      xT = "; xT 
Print #2, "      yT = "; yT 
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Print #2, "" 
Print #2, "  Other parameters:" 
Print #2, "" 
Print #2, "      T = "; T 
Print #2, "      h = "; h 
Print #2, "" 
Print #2, "  Initial values of estimated parameters:" 
Print #2, "" 
Print #2, "      a_0  = "; a_0 
Print #2, "      b_0  = "; b_0 
Print #2, "      r_0  = "; r_0 
Print #2, "      m1_0 = "; m1_0 
Print #2, "      m2_0 = "; m2_0 
Print #2, "" 
Print #2, "  Estimated parameter values: " 
Print #2, "" 
Print #2, "      a  = "; a 
Print #2, "      b  = "; b 
Print #2, "      r  = "; r 
Print #2, "      m1 = "; m1 
Print #2, "      m2 = "; m2 
Print #2, "" 
Print #2, "  Estimated equations:" 
Print #2, "" 
Print #2, "      x(t) = "; 
Print #2, Using "######.###"; m1; 
Print #2, " * EXP("; 
Print #2, Using "##.########"; -r; 
Print #2, " * t )  + "; 
Print #2, Using "######.###"; m2; 
Print #2, " * EXP("; 
Print #2, Using "##.########"; r; 
Print #2, " * t )" 
Print #2, "" 
Print #2, "      y(t) = "; 
Print #2, Using "######.###"; r / a * m1; 
Print #2, " * EXP("; 
Print #2, Using "##.########"; -r; 
Print #2, " * t )  - "; 
Print #2, Using "######.###"; r / a * m2; 
Print #2, " * EXP("; 
Print #2, Using "##.########"; r; 
Print #2, " * t )" 
 
Close #2 
End 
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A.2 Empirical Appendix 

 

Day of the 
battle 

Size of the force from USA during the battle of 
Iwo Jima (from Stymfal (2022)). 

0 54000 
1 52839 
2 50945 
3 56026 
4 54885 
5 53744 
6 66150 
7 65245 
8 64373 
9 62869 

10 62334 
11 61400 
12 60662 
13 59544 
14 59340 
15 59076 
16 58774 
17 58191 
18 57254 
19 56636 
20 56055 
21 55303 
22 54791 
23 54393 
24 53933 
25 53342 
26 53067 
27 52799 
28 52730 
29 52603 
30 52502 
31 52407 
32 52299 
33 52150 
34 52150 
35 52150 
36 52135 

 

 


